Random Walk Experiment

In a dynamic network, at least one network parameter changes over time. In the random walk experiment, a network parameter is changed according to a random walk model (random process). The random walk is an abstract model that mimics the dynamics present in real networks.

Scenario

In the random walk experiment, a single flow operates in a dynamic dumbbell network. The flow generates greedy source traffic and uses a CCA. The bandwidth, two-way propagation delay, and the random loss probability can follow a random walk. In one experiment, all three network parameters may be changed simultaneously. For each network parameter, a lower bound \(x_{\min}\), an upper bound \(x_{\max}\), a correlation parameter \(\rho\), and a noise level \(\sigma\) can be specified as experiment parameters to configure the random walk models.

Each random walk is bounded between \(x_{\min}\) and \(x_{\max}\) to retain realistic values throughout an experiment. Furthermore, each random walk is correlated because network parameters often exhibit such correlations over time, e.g., the capacity deteriorates due to slow fading effects in a wireless channel. The unbounded random walk model is given by \(X_t = X_{t-1} + \Delta X_t\) with the step size \(\Delta X_t = \rho \Delta X_{t-1} + \epsilon_t\), where the correlation parameter \(\rho \in [0, 1]\) and \(\epsilon_t\) is drawn from a normal distribution \(\mathcal{N}(0, \sigma^2)\). The bounded random walk is then obtained by enforcing the boundary constraint with \(X_t = \min\left[ \max\left(X_t, x_{\min}\right),\ x_{\max} \right]\).

The experiment parameters configure the three random walks (x can be rate, delay, or loss):

  • x_corr_coeff, x_noise_std, x_min, x_max: The correlation coefficient \(\rho\), standard deviation \(\sigma\) of the Gaussian noise, lower bound, and upper bound of the random walk x

To summarize the experiment setup:

  • Topology: Dumbbell topology (\(K=1\)) with at least one dynamic network parameter

  • Flows: A single flow (\(K=1\)) that uses a CCA

  • Traffic Generation Model: Greedy source traffic

Experiment Results

Experiment #70

Parameters

Command: ns3-dev-ccperf-random-walk-bottleneck-default --experiment-name=random_walk --db-path=benchmark_TcpNewReno.db '--parameters={aut:TcpNewReno,interval:100ms,rate_corr_coeff:0.9,rate_noise_std:500kbps,rate_min:1Mbps,rate_max:16Mbps,delay_corr_coeff:0.9,delay_noise_std:0s,delay_min:4ms,delay_max:60ms,loss_corr_coeff:0.9,loss_noise_std:0.0,loss_min:0.0,loss_max:0.05}' --aut=TcpNewReno --stop-time=15s --seed=42 --interval=100ms --rate-corr-coeff=0.9 --rate-noise-std=500kbps --rate-min=1Mbps --rate-max=16Mbps --delay-corr-coeff=0.9 --delay-noise-std=0s --delay-min=4ms --delay-max=60ms --loss-corr-coeff=0.9 --loss-noise-std=0.0 --loss-min=0.0 --loss-max=0.05 --bw=16Mbps --loss=0.0 --qlen=20p --qdisc=FifoQueueDisc --rtts=15ms --sources=src_0 --destinations=dst_0 --protocols=TCP --algs=TcpNewReno --recoveries=TcpPrrRecovery --start-times=0s --stop-times=15s '--traffic-models=Greedy(bytes=0)'

Flows

src dst transport_protocol cca cc_recovery_alg traffic_model start_time stop_time
src_0 dst_0 TCP TcpNewReno TcpPrrRecovery Greedy(bytes=0) 0.00 15.00

Metrics

The following tables list the flow, link, and network metrics of experiment #70. Refer to the the metrics page for definitions of the listed metrics.

Flow Metrics

Flow metrics capture the performance of an individual flow. They are measured at the endpoints of a network path at either the source, the receiver, or both. Bold values indicate which flow achieved the best performance.

Metric flow_1
cov_in_flight_l4 0.31
cov_throughput_l4 0.56
flow_completion_time_l4 15.00
mean_cwnd_l4 26.65
mean_delivery_rate_l4 10.13
mean_est_qdelay_l4 43.16
mean_idt_ewma_l4 2.89
mean_in_flight_l4 26.16
mean_network_power_l4 406.04
mean_one_way_delay_l7 3058.63
mean_recovery_time_l4 50.02
mean_sending_rate_l4 10.20
mean_sending_rate_l7 12.27
mean_srtt_l4 58.16
mean_throughput_l4 10.14
mean_throughput_l7 10.14
mean_utility_mpdf_l4 -0.26
mean_utility_pf_l4 1.98
mean_utilization_bdp_l4 4.22
mean_utilization_bw_l4 0.97
total_retransmissions_l4 54.00
total_rtos_l4 0.00

Figures

The following figures show the results of the experiment #70.

Time Series Plot of the Operating Point

Time series plot of the number of segments in flight, the smoothed round-trip time (sRTT), and the throughput at the transport layer.

Distribution of the Operating Point

The empirical cumulative distribution function (eCDF) of the throughput and smoothed round-trip time (sRTT) at the transport layer of each flow.

Comparison of Congestion Control Algorithms (CCAs)

Figures