Random Walk Experiment
In a dynamic network, at least one network parameter changes over time. In the random walk experiment, a network parameter is changed according to a random walk model (random process). The random walk is an abstract model that mimics the dynamics present in real networks.
Scenario
In the random walk experiment, a single flow operates in a dynamic dumbbell network. The flow generates greedy source traffic and uses a CCA. The bandwidth, two-way propagation delay, and the random loss probability can follow a random walk. In one experiment, all three network parameters may be changed simultaneously. For each network parameter, a lower bound \(x_{\min}\), an upper bound \(x_{\max}\), a correlation parameter \(\rho\), and a noise level \(\sigma\) can be specified as experiment parameters to configure the random walk models.
Each random walk is bounded between \(x_{\min}\) and \(x_{\max}\) to retain realistic values throughout an experiment. Furthermore, each random walk is correlated because network parameters often exhibit such correlations over time, e.g., the capacity deteriorates due to slow fading effects in a wireless channel. The unbounded random walk model is given by \(X_t = X_{t-1} + \Delta X_t\) with the step size \(\Delta X_t = \rho \Delta X_{t-1} + \epsilon_t\), where the correlation parameter \(\rho \in [0, 1]\) and \(\epsilon_t\) is drawn from a normal distribution \(\mathcal{N}(0, \sigma^2)\). The bounded random walk is then obtained by enforcing the boundary constraint with \(X_t = \min\left[ \max\left(X_t, x_{\min}\right),\ x_{\max} \right]\).
The experiment parameters configure the three random walks
(x
can be rate
, delay
, or
loss
):
x_corr_coeff
,x_noise_std
,x_min
,x_max
: The correlation coefficient \(\rho\), standard deviation \(\sigma\) of the Gaussian noise, lower bound, and upper bound of the random walkx
To summarize the experiment setup:
Topology: Dumbbell topology (\(K=1\)) with at least one dynamic network parameter
Flows: A single flow (\(K=1\)) that uses a CCA
Traffic Generation Model: Greedy source traffic
Experiment Results
Experiment #70
Parameters
Command: ns3-dev-ccperf-random-walk-bottleneck-default --experiment-name=random_walk --db-path=benchmark_TcpNewReno.db '--parameters={aut:TcpNewReno,interval:100ms,rate_corr_coeff:0.9,rate_noise_std:500kbps,rate_min:1Mbps,rate_max:16Mbps,delay_corr_coeff:0.9,delay_noise_std:0s,delay_min:4ms,delay_max:60ms,loss_corr_coeff:0.9,loss_noise_std:0.0,loss_min:0.0,loss_max:0.05}' --aut=TcpNewReno --stop-time=15s --seed=42 --interval=100ms --rate-corr-coeff=0.9 --rate-noise-std=500kbps --rate-min=1Mbps --rate-max=16Mbps --delay-corr-coeff=0.9 --delay-noise-std=0s --delay-min=4ms --delay-max=60ms --loss-corr-coeff=0.9 --loss-noise-std=0.0 --loss-min=0.0 --loss-max=0.05 --bw=16Mbps --loss=0.0 --qlen=20p --qdisc=FifoQueueDisc --rtts=15ms --sources=src_0 --destinations=dst_0 --protocols=TCP --algs=TcpNewReno --recoveries=TcpPrrRecovery --start-times=0s --stop-times=15s '--traffic-models=Greedy(bytes=0)'
Flows
src | dst | transport_protocol | cca | cc_recovery_alg | traffic_model | start_time | stop_time |
---|---|---|---|---|---|---|---|
src_0 | dst_0 | TCP | TcpNewReno | TcpPrrRecovery | Greedy(bytes=0) | 0.00 | 15.00 |
Metrics
The following tables list the flow, link, and network metrics of experiment #70. Refer to the the metrics page for definitions of the listed metrics.
Flow Metrics
Flow metrics capture the performance of an individual flow. They are measured at the endpoints of a network path at either the source, the receiver, or both. Bold values indicate which flow achieved the best performance.
Metric | flow_1 |
---|---|
cov_in_flight_l4 | 0.31 |
cov_throughput_l4 | 0.56 |
flow_completion_time_l4 | 15.00 |
mean_cwnd_l4 | 26.65 |
mean_delivery_rate_l4 | 10.13 |
mean_est_qdelay_l4 | 43.16 |
mean_idt_ewma_l4 | 2.89 |
mean_in_flight_l4 | 26.16 |
mean_network_power_l4 | 406.04 |
mean_one_way_delay_l7 | 3058.63 |
mean_recovery_time_l4 | 50.02 |
mean_sending_rate_l4 | 10.20 |
mean_sending_rate_l7 | 12.27 |
mean_srtt_l4 | 58.16 |
mean_throughput_l4 | 10.14 |
mean_throughput_l7 | 10.14 |
mean_utility_mpdf_l4 | -0.26 |
mean_utility_pf_l4 | 1.98 |
mean_utilization_bdp_l4 | 4.22 |
mean_utilization_bw_l4 | 0.97 |
total_retransmissions_l4 | 54.00 |
total_rtos_l4 | 0.00 |
Link Metrics
Link metrics are recorded at the network links of interest, typically at bottlenecks. They include metrics that measure queue states. Bold values indicate which link achieved the best performance.
Metric | btl_forward |
---|---|
mean_qdisc_delay_l2 | 43.19 |
mean_qdisc_length_l2 | 12.82 |
mean_sending_rate_l1 | 10.52 |
total_qdisc_drops_l2 | 54.00 |
Figures
The following figures show the results of the experiment #70.Time Series Plot of the Operating Point
Time series plot of the number of segments in flight, the smoothed round-trip time (sRTT), and the throughput at the transport layer.
Distribution of the Operating Point
The empirical cumulative distribution function (eCDF) of the throughput and smoothed round-trip time (sRTT) at the transport layer of each flow.